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ation. However, alternative mechanisms cannot be 
precluded. 

Treatment of the spirodienone 10 in methanol with 
dry HCl gas gave the ketal 13 (71 %): mp 107-109°; 
ir X ^ 5.99 /*; mass spectrum m/e 401 (M+). Room 
temperature treatment of 13 in THF with an excess of 
LiAlH4 gave O-methylerybidine (11, 81%, mp 139-
140°, mixture melting point, mixture tic, and mass 
spectrum identical with those of a sample prepared by 
diazomethane methylation of erybidine (12)).1G It is 
probable that the transformation proceeds via reduc­
tion of 13 to 14, fragmentation to a dibenzazonine 
iminium salt, and reduction to l l . 1 7 

Dibenzazonine derivatives related to 11 have been 
shown to be effective in vitro and in vivo precursors of 
the erythrinan alkaloids.ls In view of the newly dis­
covered facile conversions of the benzylisoquinoline 
derivative 5 to "neoproerythrinadienone" 10 and thence 
to dibenzazonine 11, the chemistry of the neoproery-
thrine system may have important implications for the 
biosynthesis of the Erythrina alkaloids. 

Investigations are in progress to determine possible 
further implications of nonphenol oxidative coupling 
for alkaloid biosynthesis. 
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Heteroaromatic Nucleophilic Substitution. Inducing a 
Change from an Ionic to a Radical-Chain Mechanism 
with Methoxide Ion 

Sir: 
A newly emerging area of chemistry is found in rad-

ical-anion chain substitution reactions at aromatic and 
aliphatic carbon atoms. 1^8 We wish to report a novel 
result. A substitution reaction is changed from an 
ionic to a radical-chain pathway merely by adding 
NaOCH3. 

4-Bromoisoquinoline (I) reacts with NaSC6H5 in 
CH3OH to give 4-phenylthioisoquinoline (II). But 

(1) For recent reviews see N. L. Holy and J. D. Marcum, Angew. 
Chem., Int. Ed. Engl., 10, 115 (1971); G. A. Russell, Chem. Soc, Spec. 
Publ., No. 24,271 (1970). 
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Figure 1. Time-dependent formation of 4-phenylthioisoquinoline 
from 4-bromoisoquinoline and NaSC6H5 in methanol at 147°. In 
all cases the initial concentrations of 4-bromoisoquinoline and 
NaSC6H5 are 0.52 and 0.98 M, respectively. Curve A shows the 
rate of formation of the substitution product in the absence of 
additives. In the case of curve B the additive is 0.98 M NaOCH3 

while the additives are 0.98 M NaOCH3 and 0.2 M azobenzene in 
curve C. 

two curious changes result when NaOCH3 is added: 
(a) The rate of formation of II increases and (b) II as 
well as isoquinoline (III), a reductive dehalogenation 
product, are formed,9 eq 1. Only traces of 4-methoxy-
isoquinoline are found.10'11 

SC6H-, 

The results of three separate experiments summarized 
in Figure 1 indicate how fast the concentration of II 
increases with time at 147°. Similar curves (not 
shown) were constructed to follow the disappearance 
of I and the formation of III. The initial concentra­
tions of I (0.52 M) and NaSC6H3 (0.98 M) are the 
same in the three experiments. Curve A shows how 
fast II is formed in the absence of NaOCH3. For ex­
ample, after 370 min only 38% of II has formed, the 
remainder being unreacted I. This reaction shows the 
usual second-order kinetics found for nucleophilic sub­
stitution at an aromatic carbon atom (k = 2.7 X 10~5 

M- 1 sec-1). However, the addition of 0.98 M Na-
OCH3 to a second mixture profoundly affects the reac­
tion, curve B. The reaction now is essentially com­
plete after about 90 min; approximately 65% of II and 
35% of III have formed. An induction period lasting 
for about 35 min is readily apparent. Clearly, after 
this induction period the rate of formation of the sub­
stitution product is markedly accelerated. 

The experiment which provides insight into the na-

(9) Reaction mixtures were analyzed by nmr and by glpc. Reported 
products comprise at least 90% of the mixture at completion. Satis­
factory analyses have been obtained for II, mp 60-61 °. 

(10) It has long been known that I and NaOCH3 give III along with 
trace amounts of 4-methoxyisoquinoline.11 We have found the rate of 
this reductive dehalogenation process to be retarded by radical in­
hibitors such as azobenzene and azoxybenzenc, indicating a radical-
chain process. 

(11) F. W. Bergstromand J. H. Rodda, J. Amer. Chem. Soc, 62,3OJO 
(1940). 
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ture of the beneficial effect of NaOCH3 on the sub­
stitution reaction is summarized by curve C. The 
initial concentrations of I, NaSC6H5, and NaOCH3 are 
the same as those giving rise to curve B. Now, 0.2 M 
azobenzene is present as well, and the NaOCH3 pro­
moted reaction is inhibited. Inhibition is not com­
plete because the formation of II still is faster than in 
the absence of NaOCH3, curve A. Similarly, the for­
mation of III also is inhibited. A control experiment 
involving a mixture of NaSC6H5, NaOCH3, and azo­
benzene but not I shows that these materials do not 
react. A second control indicates that 0.3 M azoben­
zene does not influence the rate of formation of II in 
the absence of NaOCH3. 

The formation of II in the absence of NaOCH3 very 
likely proceeds by the well-known ionic route involving 
attack of C6H5S - on I to give an intermediate a com­
plex.12 A new pathway must be followed in the pres­
ence of NaOCH3. The induction period and the rate 
retarding effect of a material known to be a good elec­
tron acceptor13-16 strongly suggests that substitution 
in the presence of NaOCH3 involves electron transfer 
and a radical chain mechanism. 

We speculate that the propagation steps of the chain 
reaction may involve the formation of the radical anion 
of I which then eliminates bromide ion to give the 4-
isoquinolyl radical (Ar-), eq 2. This radical may react 
with C6H5S - to give the radical anion of II, eq 3, which 
then donates an electron to I to give II and to continue 
the chain, eq 4. The 4-isoquinolyl radical also can 
abstract a hydrogen atom from CH3OH or CH 3O - to 
give III, eq 5. The radical ion CH2O - formed by the 
reduction process can also continue the chain, eq 6.16 

Such an electron transfer scheme is not unprece­
dented.1'17'18 The identity of initiation and termina­
tion steps is unknown. 

I - - — » - B t - + Ar- (2) 

Ar- + C6H6S- — > I I - - (3) 

I I - - + I — ? - I I + I - - (4) 

Ar- + CH 3 O- — > • III + CH 2 O- (5) 

I + CH2O- — > • C H 2 = O + 1-- (6) 

Our results have significant implications. Thus, it is 
a common practice when studying substitution reactions 
involving R ' S - nucleophiles in ROH solvent to suppress 
the concentration of R O - . This is done to avoid the 
possibility of a competing substitution reaction in­
volving RO - . In our case the addition of R O - brings 
about an entirely new mechanism of substitution. It 
seems likely that a similar change in mechanism may be 
observed in other instances as well. Indeed, it may 
prove rewarding to deliberately add RO - . Certainly, 

(12) C. F. Bernasconi, MTP (Med. Tech. Publ. Co.) Int. Rev. Sci.: 
Org. Chem., Ser. One, 3, 33 (1973); F. Pietra, Quart. Rev., Chem. Soc, 
23,504(1969). 
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Danen, K. Chang, and G. Kaupp, ibid., 90, 4646 (1968). 
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652(1967). 
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(16) J. F. Bunnett and C. C. Wamser, J. Amer. Chem. Soc, 89, 6712 
(1967); J. F. Bunnett and H. Takayama, ibid., 90, 5173 (1968). 

(17) D. E. Bartak, W. C. Danen, and M. D. Hawley, J. Org. Chem., 
35, 1206(1970). 
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(1972). 

the suppression of R O - should not always be the rule. 
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Oxygen Quenching of Charge-Transfer Excited States 
of Ruthenum(II) Complexes. Evidence for Singlet 
Oxygen Production 

Sir: 

Ground-state oxygen is a good energy-transfer 
quencher of organic triplets1'2 and a good catalytic 
deactivator of organic singlet states.3 Little is known, 
however, about the excited-state interactions of metal 
complexes and oxygen. Oxygen efficiently quenches 
doublet states of Cr(III) complexes,4 and Co(II) and 
Ni(II) complexes efficiently deactivate singlet oxygen;5 

the mechanisms remain uncertain. Because d-d and 
charge-transfer (CT) excited states of metal complexes 
have no direct organic counterpart and since spin-orbit 
coupling is much greater in complexes than in organics, 
different rules may well apply. We report here evi­
dence for the efficient production of singlet oxygen on 
deactivation of CT-triplet states of ruthenium(II) 
complexes. 

Ru(bipy)3Cl2 (G. Frederick Smith), Ru(bipy)2(CN)2,
6 

Ru(phen)3(C104)3, Ru(phen)2(CN)2
7 (bipy = 2,2'-bi-

pyridine; phen = 1,10-phenanthroline), and Fisher 
Rose Bengal were used as sensitizers. Aldrich 2,3-
dimethyl-2-butene (TME) and 1,3-cyclohexadiene 
(CHD) were used as oxygen scavengers. 

Stern-Volmer quenching constants, Xsv's, were com­
puted from [(</>„/<£) - l]/[02] and [(r0/r) - l]/[02]; 
<£'s and T'S represent emission intensities and mean 
lifetimes, respectively. Ksv'% and bimolecular quench­
ing constants, /c2's, are summarized in Table I. 

That O2 quenching involved more than just catalytic 
deactivation of the complexes was demonstrated by 

Table I. Oxygen Quenching of Metal Complexes at ~ 2 1 c 

Ksv, M-1 k2X 10V 
Complex-solvent <p method" r method6 M - ' sec - L 

Ru(phen)2(CN)2-H20 3900 3900 5,5 
Ru(phen)2(CN)2-CH3OH 8500 9900 5.0 
Ru(phen)3

2+-H20 4900 4.7 
Ru(phen)3

2+-CH3OH 1010 3.2 
Ru(bipy)2(CN2)-H20 1180 4.5 
Ru(bipy)2(CN)2-CH3OH 1910 4.5 
Ru(bipyV + -H 2 0 2060 1890 3.3 
Ru(bipy)3

2+-CH3OH 1380 1470 1.7 

° ± 5 %. b ± 10 %. c Calculated from K,v by 4> method. 
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